YTN

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

실시간 주요뉴스

건축&디자인

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

2021년 07월 20일 10시 00분 댓글
글자크기 조정하기
〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리
● 멋진 세상 속 3D프린팅 건축 읽기_ 절약(reduce)‧재사용(reuse)‧재활용(recycle)의 3R 개념을 십분 적용한 자원순환형 환경친화 브리지(An arched 3D-concrete-printed masonry bridge) Striatus

스트레이터스는 일체의 모르타르나 보강재 없이 조립한 3D 프린트 콘크리트 블록 아치형 조적 브리지이다. 16×12m 길이로 아담한 규모를 자랑하는 스트레이터스 브리지는 뛰어난 건축가의 전통적인 기술과 설계와 엔지니어링, 로봇 제조기술을 절묘하게 결합한 것이다. 브리지는 올 11월까지 베니스 건축비엔날레가 열리는 자르디니 카스텔로 공원에 전시된다.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

전통적인 콘크리트 건축의 대안을 제시하는 스트레이터스는 3D 콘크리트 프린팅(3D CP)을 통해 현대적인 디자인으로 최적화함으로써 구조적으로 안전하고 적은 비용으로 더 많은 건설을 위한 책임감 있는 생태학적 시도로 읽혀진다. 특히 브리지 공사에서는 모르타르를 사용하지 않기 때문에 간단히 블록을 해체하여 다른 위치에 재활용할 수 있다는 장점을 지닌다.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

스트레이터스는 기하학을 통한 강도를 만들어내는 비철근 콘크리트 구조물이다. 콘크리트는 압축 성능이 가장 좋은 조적으로 기하학을 적용한 아치형 구조 덕에 재료비를 절감할 수 있고 환경적으로도 효과적인 교량 건축으로 손색이 없다. 초승달 모양의 유연한 아치 구조는 보강 없이 제작되고 바인더 없이 건식 조립을 사용해 반복적으로 설치, 분해, 재조립 및 용도 변경이 가능하다. 절약(reduce)‧재사용(reuse)‧재활용(recycle)의 3R 개념을 십분 적용한 브리지는 지속가능한 콘크리트 구조물을 통해 자원을 절약하고 오염물질의 배출을 획기적으로 줄여주며 자원순환형 사회를 구현하고자 하는 환경운동과 맞물려 있다.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리


〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

브리지는 아치형 로마 석교와 동일한 구조적 원리를 지니며 총 53개의 3D CP로 구성된다. 또한 적층 제조 공정을 통해 압축력과 인장력을 지닌 구조적인 깊이와 안정성을 확보한다. 모든 블록은 블록당 평균 500개의 프린팅 레이어를 포함하며 속이 비어있고 가벼우며 가능한 최소한의 재료를 활용해 견고한 구조를 유지한다. 로봇기술을 활용한 로봇 3D 콘크리트 프린팅 시스템은 제조 및 건설 산업에서 고도로 숙련된 노동력과 디지털 건설기술을 새롭게 도입하는 시도이다.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

이처럼 스트레이터스는 적은 비용으로 효율성을 높일 수 있는 공공건축의 밝은 청사진을 제시한다. 스트레이터스가 제시하는 새로운 바닥 슬래브 시스템은 기존의 철근콘크리트의 평면적인 바닥 슬래브에 비해 완전한 분리와 재활용이 가능한 건식 조립식으로 슬래브 시스템의 수명이 다했을 때 간단히 해체하여 재활용할 수 있다는 점에서 건설 폐기물을 줄이는 동시에 건설 환경의 혁신적인 대안으로 떠오른다. >>by the Block Research Group (BRG) at ETH Zurich and Zaha Hadid Architects Computation and Design Group (ZHACODE), in collaboration with incremental3D (in3D), made possible by Holcim, Design_ ZHACODE: Jianfei Chu, Vishu Bhooshan, Henry David Louth, Shajay Bhooshan, Patrik Schumacher, ETH BRG: Tom Van Mele, Alessandro Dell’Endice, Philippe Block, 자료_ ZHACODE, Photograph by Naaro, 기사 출처_ 데일리 에이앤뉴스_ Daily AN NEWS ‧ ANN TV(ANN NEWS CENTER) 제공
안정원(비비안안 VIVIAN AN) 에이앤뉴스 발행인 겸 대표이사, 한양대학교 실내건축디자인학과 겸임교수, 한양대 IAB자문교수
기사 제공_ 에이앤뉴스그룹(데일리에이앤뉴스_건설경제건축디자인문화예술종합미디어뉴스‧에이앤앤티브이_건축디자인건설미디어뉴스채널 ‧ 에이앤앤북스_건설지‧건설백서‧건설스토리북‧건설엔지니어링북전문출판사) ‧ 에이앤앤아카이브(ANN ARCHIVE)_건축건설문화디자인아카이브

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Striatus is an arched masonry footbridge composed of 3D-printed concrete blocks assembled without mortar or reinforcement. The 16 x 12 metre footbridge is the first of its kind, combining traditional techniques of master builders with advanced computational design, engineering and robotic manufacturing technologies.
Exhibited at the Giardini della Marinaressa during the Venice Architecture Biennale until November 2021, Striatus has been developed by the Block Research Group (BRG) at ETH Zurich and Zaha Hadid Architects Computation and Design Group (ZHACODE), in collaboration with incremental3D (in3D) and made possible by Holcim.
Proposing a new language for concrete that is structurally informed, fabrication aware, ecologically responsible and precisely placed to build more with less, Striatus optimises the properties of masonry structures, 3D concrete printing (3DCP) and contemporary design; presenting an alternative to traditional concrete construction.
The name “Striatus” reflects its structural logic and fabrication process. Concrete is precisely printed in layers orthogonal to the main structural forces to create a “striated” compression-only structure that requires no mortar or reinforcement.
As the construction does not need mortar, the blocks can be dismantled, and the bridge reassembled at different location. If the construction is no longer needed, the materials can simply be separated and recycled.
Striatus is an unreinforced concrete structure that achieves strength through geometry. Concrete can be considered an artificial stone that performs best in compression. In arched and vaulted structures, material can be placed precisely so that forces can travel to the supports in pure compression. Strength is created through geometry, rather than an inefficient accumulation of materials as in conventional concrete beams and flat floor slabs. This presents opportunities to significantly reduce the amount of material needed to span space as well as the possibility to build with lower-strength, less-polluting alternatives.
Striatus’ bifurcating deck geometry responds to its site conditions. The funicular shape of its structural arches has been defined by limit analysis techniques and equilibrium methods, such as thrust network analysis, originally developed for the structural assessment of historic masonry vaults; its crescent profile encompasses the thrust lines that trace compressive forces through the structure for all loading cases.
Steel tension ties absorb the horizontal thrust of the arches. Neoprene pads placed in between the dry-assembled blocks avoid stress concentrations and control the friction properties of the interfaces, echoing the use of lead sheets or soft mortar in historical masonry construction.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리


〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

In plan, the boundaries of the structure form deep arches that transfer horizontal loads (for example, from visitors leaning against the balustrades) to the supports in pure compression. Advanced discrete element modelling (DEM) was used to refine and optimise the blocks’ stereotomy and to check stability of the entire assembly under extreme loading cases or differential settlements of the supports.
The bridge’s 53 3DCP voussoirs have been produced using non-parallel print layers that are orthogonal to the dominant flow of forces. This avoids delamination between the print layers as they are held together in compression. The additive manufacturing process ensures the structural depth of the components can be achieved without producing blocks with a solid section, hence reducing the amount of material needed compared to subtractive fabrication methods or casting.
Striatus follows masonry structural logic on two levels. As a whole, the bridge behaves as a series of leaning unreinforced voussoir arches, with discretisations orthogonal to the dominant flow of compressive forces, following the same structural principles as arched Roman bridges in stone. Locally, on the level of the voussoir, the 3DCP layers behave as traditional brick masonry evident in the inclined rows of bricks within Nubian or Mexican vaulting.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Circular by design, Striatus places material only where needed, significantly reducing its environmental footprint. Built without reinforcement and using dry assembly without binders, Striatus can be installed, dismantled, reassembled and repurposed repeatedly; demonstrating how the three R’s of sustainability (Reduce, Reuse, Recycle) can be applied to concrete structures.
Reduce: Lowering embodied emissions through structural geometry and additive manufacturing that minimises the consumption of resources and eliminates construction waste. Placing concrete only there where needed, 3DCP minimises the amount of material required, while the low-stress, compression-only funicular geometry of Striatus proposes the further development of 3DCP that will enable the use of much lower-strength, less-polluting printable materials. Compared to embedded reinforcement in concrete, Striatus uses external ties to absorb the thrust of its arched shape and dramatically reduce the amount of steel required. A high carbon-intense material, steel reinforcement (100% recycled) per unit mass is more than ten times that of a standard concrete. Reuse: Improving circularity and longevity. Unlike conventional reinforced concrete structures, Striatus is designed to be dry assembled without any binder or glue, enabling the bridge to be dismantled and reused in other locations. Its funicular design ensures the 3DCP blocks experience low stresses throughout their use, resulting in no loss of structural integrity. Striatus separates components in compression and tension, ensuring external ties can be easily accessed and maintained, resulting in a longer lifespan for the entire structure. Recycle: By ensuring different materials are separated and separable, each component of Striatus can easily be recycled with minimal energy and cost. 3D printing also avoids the waste and costs associated with single-use moulds. Additionally, the component materials within Striatus remain separate and separable with the use of mechanical connections such as simple dry contacts between the voussoirs rather than chemical glues or binders, ensuring a simple, low-energy recycling process at the end of the elements’ life, potentially after multiple cycles of reuse.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Unlike typical extrusion 3D printing in simple horizontal layers, Striatus uses a two-component (2K) concrete ink with corresponding printing head and pumping arrangement to precisely print non-uniform and non-parallel layers via a 6-axis, multi-DOF robotic arm. This new generation of 3D concrete printing in combination with the arched masonry design allows the resulting components to be used structurally without any reinforcement or post-tensioning.
To prevent misalignment between the direction of structural forces and the orientation of material layers that arises from typical shape-agnostic slicing of explicitly modelled geometry, a custom-developed design pipeline was formulated for Striatus to ensure that its printed layers are wholly aligned with the direction of compression forces throughout the entire bridge and also locally through each 3D-printed block. To address issues and challenges that could prevent in-between stability during printing, the coherence and feasibility of the gradually evolving print paths have been modelled using a Functional Representation (FRep) process.
This process encodes and continuously checks rules of minimum overlap, maximum cantilever between print layers and print length, print speed and the volume of wet concrete extruded. These measures, typically used in horizontally layered 3DCP, have been advanced and refined to work on an inclined-plane setting: - The angular differences between start and end planes of all 53 printed blocks have been simultaneously adjusted to meet multiple criteria such as an appropriate structural contact and angle between adjacent blocks, and maximum print inclination. - The careful design and iterative refinement of the hollow cross sections and infill triangulation have ensured that material is placed corresponding to the precisely analysed, local structural performance of each block. This design and optimisation has been applied to each individual layer of every block (with 500 print layers on average per block), ensuring that all blocks are as hollow and light as possible, and consequently use the least amount of material possible, while maintaining structural integrity under all loading conditions. - The resulting intricate cross-sectional design has been processed into a single, continuous print path meeting various criteria that include appropriate print speed and turning radii, structurally required material width and thickness, and controlled expression of naturally occurring printing artefacts.
A nuanced aspect of robotic 3DCP masonry is the re-introduction of intelligence and highly skilled labour into the manufacturing and construction industry. The digitisation of fabrication and digital augmentation of skilled assembly and construction techniques makes historically-accrued knowledge accessible to younger generations and enables its systematic upgrade towards industrialised construction through the use of computational and robotic technologies. In stark contrast to a brute force, and often materially wasteful economy biased towards automation and assembly line production, 3DCP masonry introduces possibilities of a symbiotic human-machine economy. This promises an environmentally, socio-culturally and economically sustainable alternative to its 20th-century predecessor.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Integrating design, engineering, fabrication and construction, Striatus redefines conventional interdisciplinary relations. The precise manufacturing of the blocks was enabled by well-defined data exchange between the various domain-specific software toolchains involved in the process. This co-development approach was facilitated through the use of COMPAS, an open-source computational framework for collaboration and research in the AEC industry, which enabled the fluent interaction among the key players of the project, working together in five different countries, under a very tight schedule and budget, at a time in which travelling was not possible.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Striatus offers a blueprint for building more with less. Created with the same structural principles and a similar fully-integrated computational design-to-fabrication approach that form the basis of the vaulted, rib-stiffened, unreinforced concrete floors being developed by the Block Research Group in partnership with Holcim, Striatus proposes an alternative to the standard inefficient floor slabs within any building.
Compared to typical reinforced-concrete flat floor slabs, this new floor system uses only 30% of the volume of concrete and just 10% of the amount of steel. The very low stresses within the funicular structure also enable the use of low-embodied-carbon concrete that incorporates high percentages of recycled construction waste. Prefabricated and dry-assembled, and therefore fully demountable and reusable, this floor system is easily and cleanly recyclable at end-of-life.
With an estimated 300 billion square metres of floor area to be constructed worldwide over the next 30 years, and floors comprising more than 40% of the weight of most high-rise buildings (10+ storeys), introducing the principles demonstrated by Striatus would truly disrupt the construction industry — transforming how we design and construct our built environment to address the defining challenges of our era.

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리

Design_ ZHACODE: Jianfei Chu, Vishu Bhooshan, Henry David Louth, Shajay Bhooshan, Patrik Schumacher, ETH BRG: Tom Van Mele, Alessandro Dell’Endice, Philippe Block
Structural engineering_ ETH BRG: Tom Van Mele, Alessandro Dell’Endice, Sam Bouten, Philippe Block
Fabrication design_ ETH BRG: Shajay Bhooshan, Alessandro Dell’Endice, Sam Bouten, Chaoyu Du, Tom Van Mele, ZHACODE: Vishu Bhooshan, Philip Singer, Tommaso Casucci
3D concrete printing_ In3D: Johannes Megens, Georg Grasser, Sandro Sanin, Nikolas Janitsch, Janos Mohacsi
Concrete material development_ Holcim: Christian Blachier, Marjorie Chantin-Coquard, Helene Lombois-Burger, Francis Steiner, LafargeHolcim Spain: Benito Carrion, Jose Manuel Arnau
Assembly & Construction_ Bürgin Creations: Theo Bürgin, Semir Mächler, Calvin Graf, ETH BRG: Alessandro Dell’Endice, Tom Van Mele
Logistics_ ETH BRG: Alessandro Dell’Endice, Tom Van Mele Holcim Switzerland & Italy: Michele Alverdi, LafargeHolcim Spain: Ricardo de Pablos, José Luis Romero
Additional partners_ Ackermann GmbH [CNC timber formwork], L2F Architettura [site measurements], Pletscher [steel supports], ZB Laser [lasercutting neoprene]
Documentation_ ZHACODE: Jianfei Chu, Cesar Fragachan, Vishu Bhooshan, Philip Singer, Edward Meyers, Shajay Bhooshan, ETH BRG: Tom Van Mele, Alessandro Dell’Endice, Philippe Block, In3D: Alexander Gugitscher, Sandro Sanin, Nikolas Janitsch, naaro, LBS Fotografia

〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리


〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리


〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리


〔안정원의 건축 칼럼〕 일체의 보강재 없이 조립과 해체가 가능한 3D 콘크리트 프린팅 브리



[저작권자(c) YTN & YTN plus 무단전재 및 재배포 금지]